Tangent bundle and indicatrix bundle of a Finsler manifold
نویسندگان
چکیده
منابع مشابه
Structure of the indicatrix bundle of Finsler-Rizza manifolds
In this paper, we construct a framed f -structure on the slit tangent space of a Rizza manifold. This induces on the indicatrix bundle an almost contact metric. We find the conditions under which this structure reduces to a contact or to a Sasakian structure. Finally we study these structures on Kählerian Finsler manifolds. M.S.C. 2010: 53B40, 53C60, 32Q60, 53C15.
متن کاملThe Scalar Curvature of the Tangent Bundle of a Finsler Manifold
Let Fm = (M,F ) be a Finsler manifold and G be the Sasaki– Finsler metric on the slit tangent bundle TM0 = TM {0} of M . We express the scalar curvature ρ̃ of the Riemannian manifold (TM0, G) in terms of some geometrical objects of the Finsler manifold Fm. Then, we find necessary and sufficient conditions for ρ̃ to be a positively homogenenous function of degree zero with respect to the fiber coo...
متن کاملOn the Vertical Bundle of a Pseudo-finsler Manifold
We define the Liouville distribution on the tangent bundle of a pseudo-Finsler manifold and prove that it is integrable. Also, we find geometric properties of both leaves of Liouville distribution and the vertical distribution.
متن کاملData-based Manifold Reconstruction via Tangent Bundle Manifold Learning
The goal of Manifold Learning (ML) is to find a description of low-dimensional structure of an unknown q-dimensional manifold embedded in high-dimensional ambient Euclidean space R p , q < p, from their finite samples. There are a variety of formulations of the problem. The methods of Manifold Approximation (MA) reconstruct (estimate) the manifold but don’t find a low-dimensional parameterizati...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2008
ISSN: 0386-5991
DOI: 10.2996/kmj/1214442799